

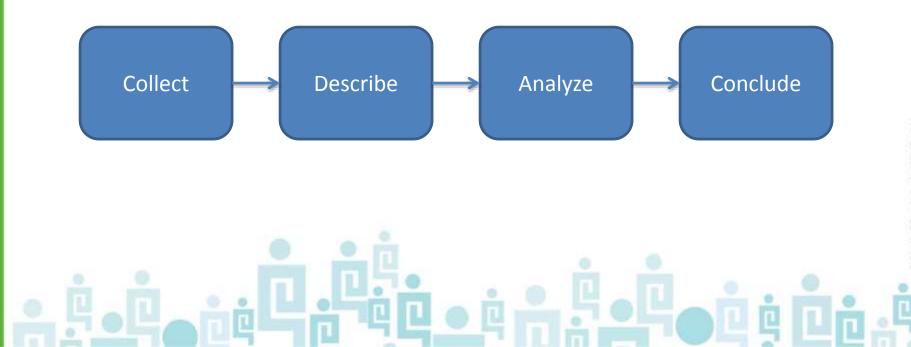
Basic Statistics

QuantInsti

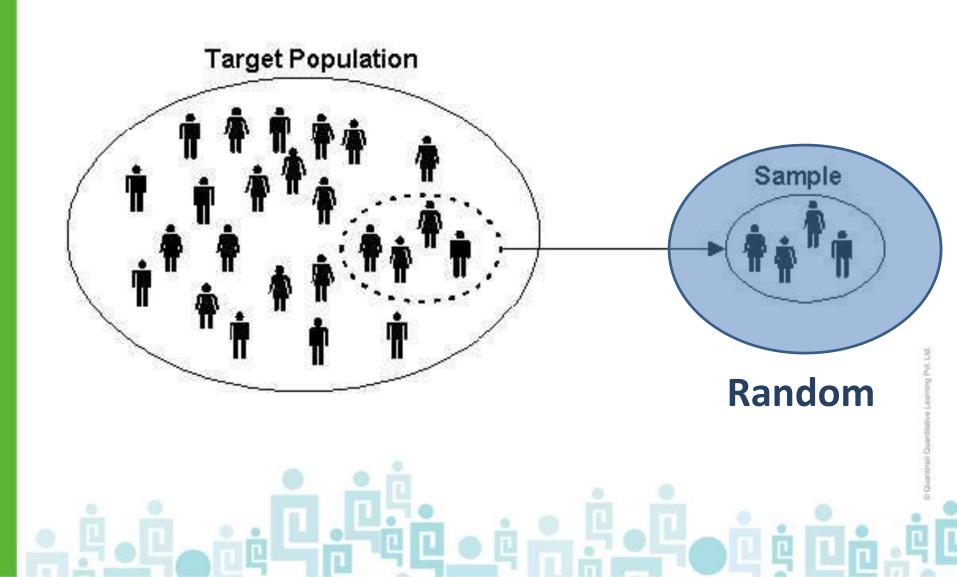
11 January 2014

What is Statistics

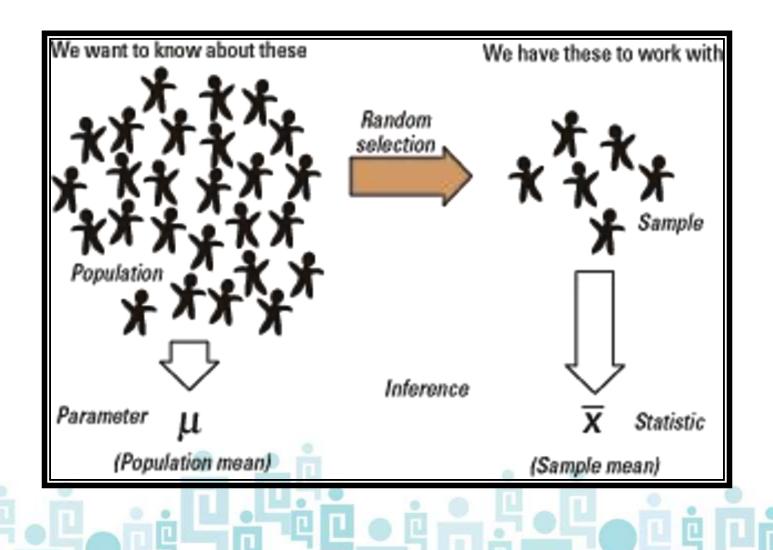
- QUANT
- To learn about something, you must first collect data
- Statistics is the art of learning from data



Population and Sample



Parameter and Statitic



Branches of Statistics

• Descriptive statistics:

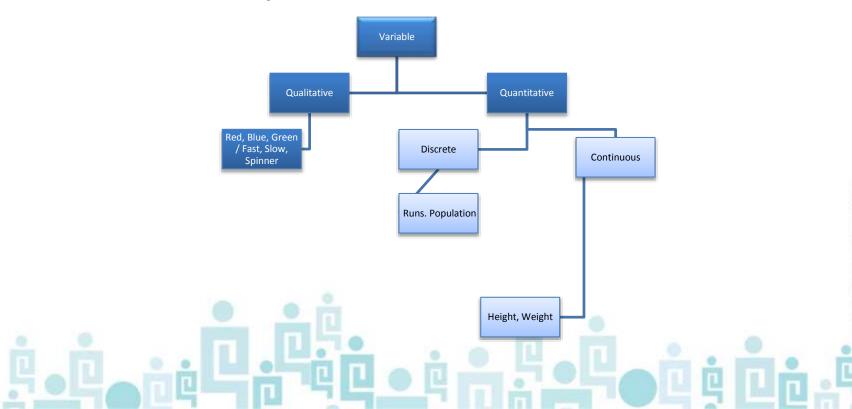
- Organization, summarization, and display of data.

• Inferential statistics:

- Draw conclusions about a population
- Probability is a basic tool

Variables

- QUANT
- Any characteristics, number, or quantity
- Can be measured or counted
- Value can 'vary'



Random Variable

- unique numerical value with every outcome
- value will vary from trial to trial
 - E.g. outcome of a coin toss, H/T

According to number of variables

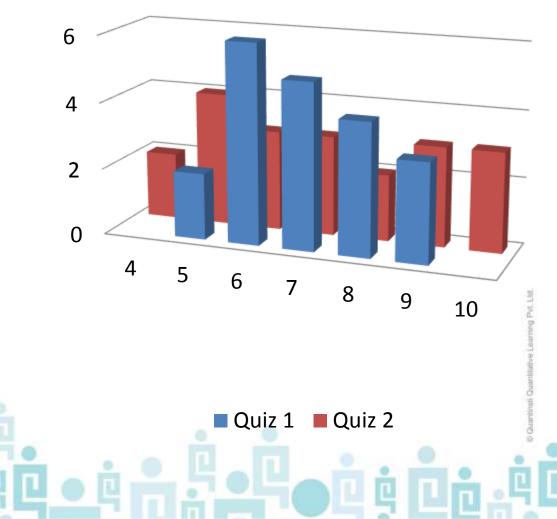
- Univariate
 - only one variable, e.g. average weight
- Bivariate
 - two variables, e.g. relationship between the height and weight

Central Tendency

- Mean
 - Sum of observations / number of observations
- Median
 - Middle value of observations
- Mode
 - Most frequently occurring value

Variability

 How 'spread out' the data is

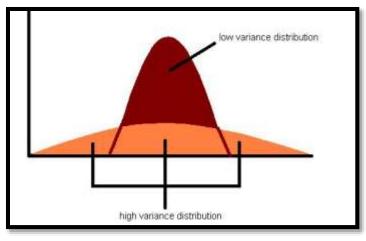


Range and Quartile

- Range
 - Difference between largest and smallest value
- Quartile
 - Divide a rank-ordered data into four equal parts

Variance

Measure of variation or diversity in a distribution

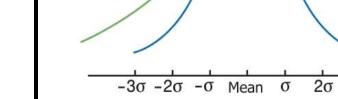


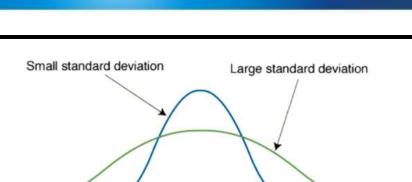
- For a population, $- \sigma^2 = \Sigma (X_i - \mu)^2 / N$
- For a sample,
 - $s^2 = \Sigma (x_i x)^2 / (n 1)$

For a sample $-s = sqrt[s^2] = sqrt[\Sigma(x_i - x)^2/(n - 1)]$

3σ

- $-\sigma = \operatorname{sqrt}[\sigma^2] = \operatorname{sqrt}[\Sigma(X_i \mu)^2 / N]$
- For a population

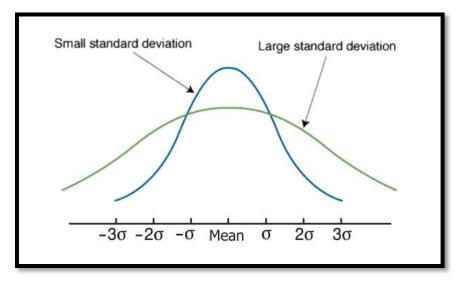




Standard Deviation

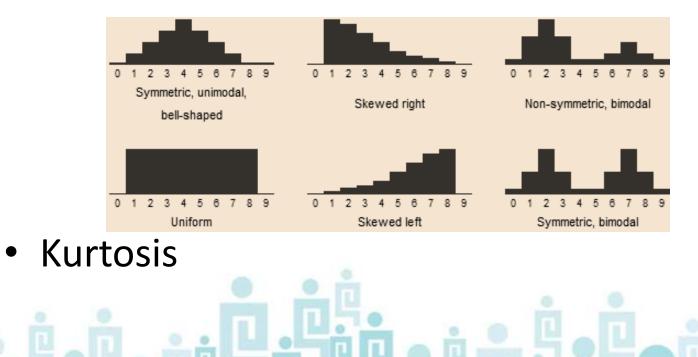
Standard Scores (z-Scores)

- how many standard deviations from the mean
 - $-z = (X \mu) / \sigma$



Data Patterns

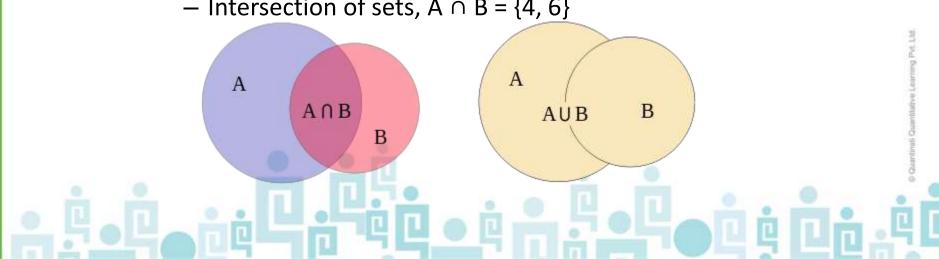
- Spread
- Shape
 - symmetry, number of peaks, skewness, and uniform



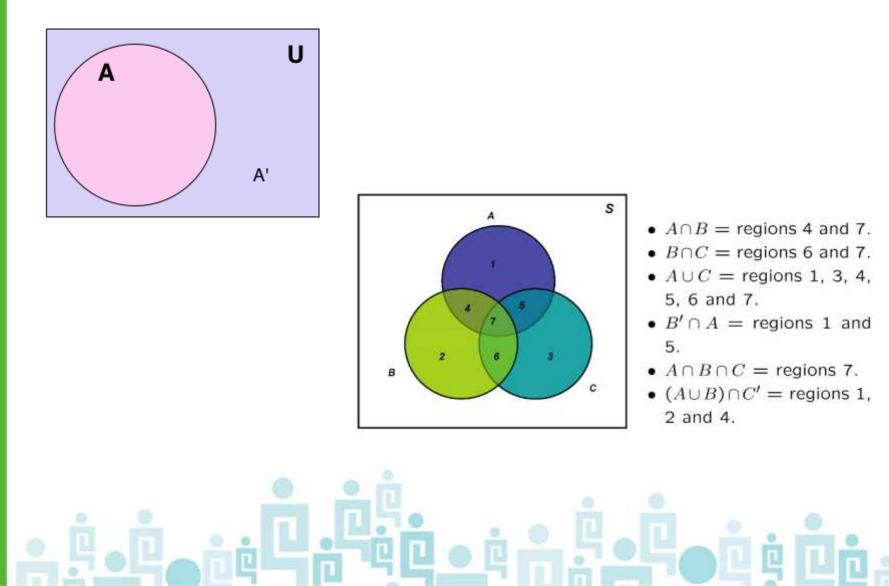
Basics of Set Theory - I

• Set

- a well-defined collection of objects
 - E.g outcomes of rolling a dice, D={1,2,3,4,5,6}
 - Let A be rolls of even no, A={2,4,6};
 - Subset A is subset of D
 - Let B be rolls greater than 3; $B = \{4, 5, 6\}$
 - Union of sets, $A \cup B = \{2, 4, 5, 6\}$
 - Intersection of sets, $A \cap B = \{4, 6\}$



Basics of Set Theory - II



Concepts of Probability

- Many events can't be predicted with total certainty
 - How likely they are to happen
 - the concept of **probability**

Tossing a coin

Throwing Dice

Probability of coin landing Head is ½ coin landing Tail is ½ Probability of any of {1,2,3,4,5,6} is 1/6

Some Definitions

- Sample Space (S)
 - all possible outcomes of a statistical experiment
 - e.g. {H,T}, {1,2,3,4,5,6}
- Events (E)
 - sets, or collections, of outcomes
 - e.g. roll and even number {2,4,6}
 - Mutually exclusive or not
- Sample Point
 - One possible outcome

Probability Model

- Probability function P
 - Assigns a number to each outcome
 - Cannot be negative, i.e. $P \ge 0$
 - Sum of all probabilities in sample space = 1, i.e. ΣP =1
 - For event A,

P(A) = Number of outcomes favourable to A
Total number of outcomes for the experiment

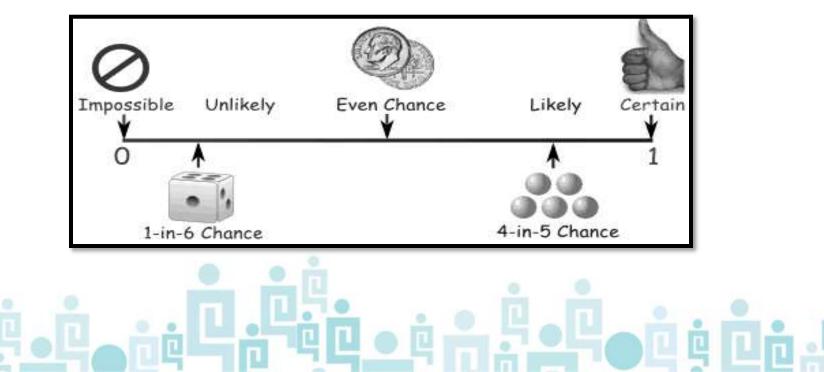
- E.g. A coin is tossed twice. What is the probability that at least on head occurs?

Rules of probability

- 0≤P(x) ≤1.
- ∑ P(x) = 1
- the probability of an event E is the sum of the probabilities of the outcomes in E:

 $- P(E) = P x \in E P(x)$

• $P(A \cup B) = P(A) + P(B)$ if $A \cap B = \emptyset$



Conditional Probability

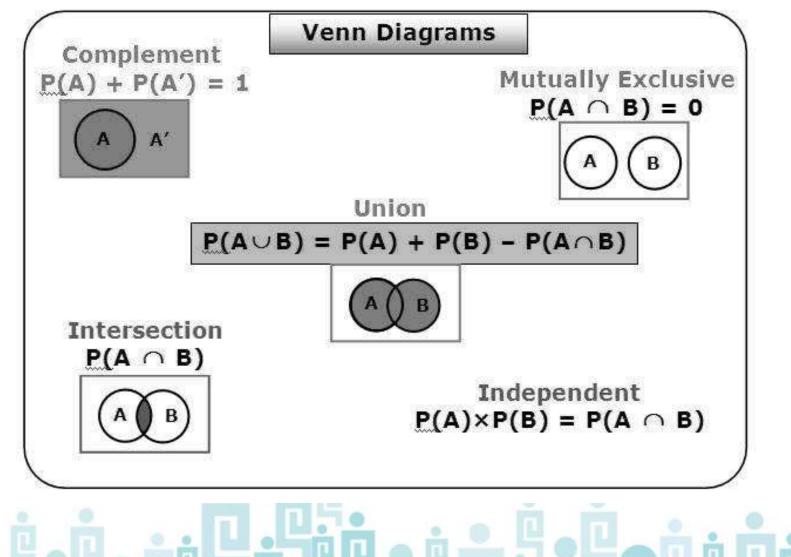
- The probability of an event B occurring when it is known that some event A has occurred is called a conditional probability
- P (B | A)
 - $P(B|A) = P(A \cap B) / P(A)$
 - Example
 - Roll a dice. What is the chance that you'd get a 6, given that you've gotten an even number?
 - *Solution*: Let A be the event of even numbers, and B of 6.
 - A ={ 2;4;6}; P(A) =1/2; (1)
 - $B = \{ 6 \};$ P(B) = 1/6 ; (2)
 - $A \cap B = \{6\};$ $P(A \cap B) = 1/6;$ (3)
 - P(B|A) =P(A∩B)/P(A)=1/3

Rules of Probability

- Addition
 - Event A <u>or</u> Event B occurs
 - $P(A \cup B) = P(A) + P(B) P(A \cap B))$
 - Mutually exclusive
- Subtraction
 - Event A will <u>not</u> occur
 - P(A) = 1 P(A')
- Multiplication
 - Event A and Event B
 - $P(A \cap B) = P(A) * P(B|A)$

Independent events

Venn Diagrams



Bayes' Theorem

• $P(A_k | B) = \frac{P(Ak \cap B)}{P(A_1 \cap B) + P(A_2 \cap B) + \dots + P(An \cap B)}$

- Useful for calculating conditional probabilities

- A₁, A₂, ..., A_nmutually exclusive, form S
- B is even from sample space, P(B)>0
- Also written as

• $P(A_k|B) = \frac{P(A_k)P(B|A_k)}{P(A_1)P(B|A_1)+P(A_2)P(B|A_2)+...+P(A_n)P(B|A_n)}$

When to Apply Bayes' Theorem

- Set of mutually exclusive events
 - $\{ A_1, A_2, \ldots, A_n \}.$
- There exists an event B
 - P(B) > 0.
- Want to compute a conditional probability
 - $P(A_k | B)$.
- You know either
 - P($A_k \cap B$) for each A_k
 - or
 - P(A_k) and P($B \mid A_k$) for each A_k

Example from Handout

- Formulate the problem:
 - Mutually exclusive events:
 - A₁ : It rains
 - A₂ : It does not rain
 - Event B
 - B: Weatherman predicts rain
 - Goal:
 - Probability of rain, given weatherman predicts rain, i.e.
 - P(A₁ | B)

Solution

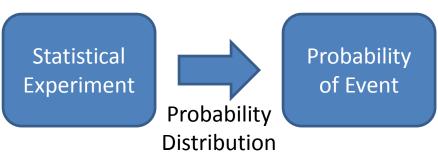
• We use second form of Bayes' theorem,

•
$$P(A_1|B) = P(A_1) P(A_1) P(A_1) P(B|A_1) + P(A_2) P(B|A_2)$$

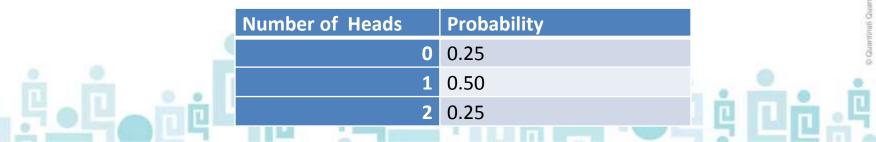
- -P(A2) = 360/365 = 0.9863014
- P(B | A1) = 0.9

-P(B | A2) = 0.1

Probability Distributions



- maps outcome of a statistical experiment with probability of occurrence
- random variable X,
 - P(X) = 1 => probability that X is 1
- E.g. coin flipped twice
 - Outcomes: {HH, HT, TH, TT}
 - X = number of heads

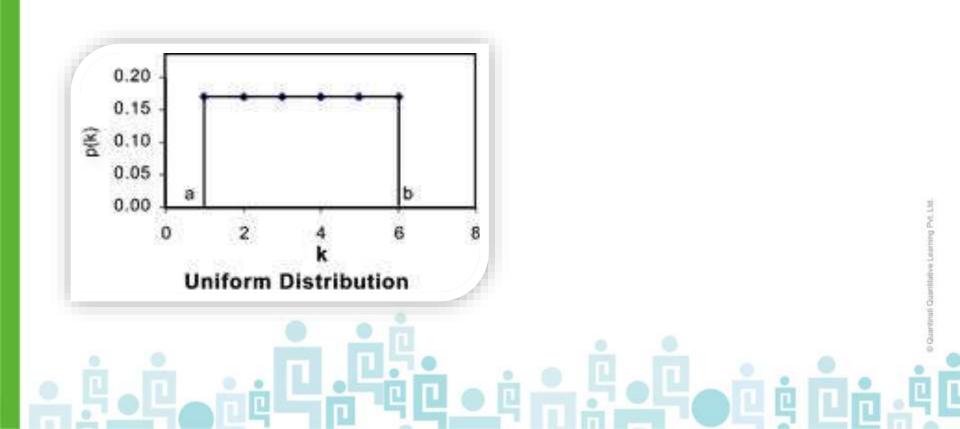


Cumulative Probability

Number of Heads	Probability	Cumulative Probability:
	P(X = x)	P(X <u><</u> x)
0	0.25	0.25
1	0.50	0.75
2	0.25	1.00

Uniform Probability Distribution

all values occur with equal probability
- P(X = x_k) = 1/k



Discrete Probability Distributions

- random variable is a discrete variable
 - Binomial probability distribution
 - Each trial results in two possible outcomes
 - Example, flip a coin *n* number of times
 - Poisson probability distribution
 - Outcomes can be classified as successes or failures
 - Average number of successes is known
 - Example, average number of homes sold by a Realty Company

Binomial Distribution

- **x**: The number of successes that result from the binomial experiment.
- **n**: The number of trials in the binomial experiment.
- **P**: The probability of success on an individual trial.
- **Q:** The probability of failure on an individual trial. (This is equal to 1 P.)
- **b(x, n, P):** Binomial probability the probability that an n-trial binomial experiment results in exactly x successes, when the probability of success on an individual trial is P.
- **C**_r: The number of combinations of n things, taken r at a time.

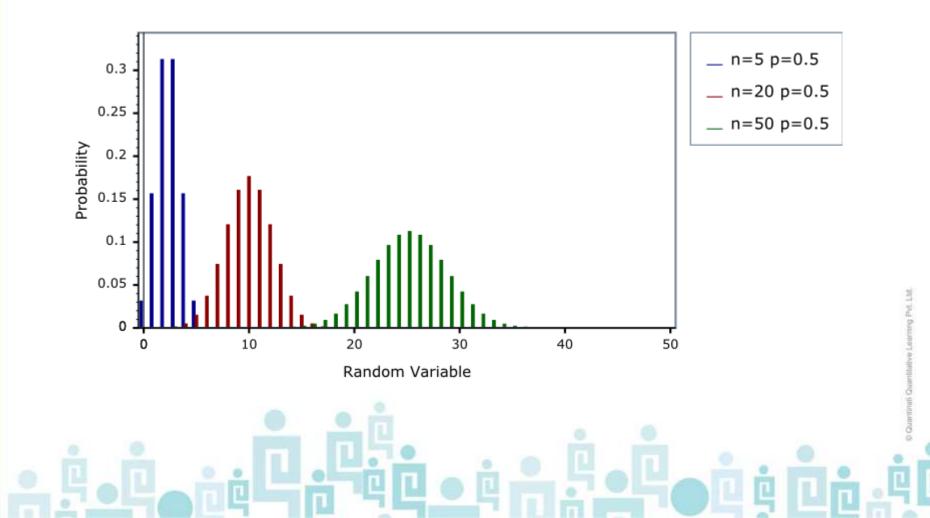
 $b(x, n, P) = {}^{n}C_{x} * P^{x} * (1 - P)^{n-x}$

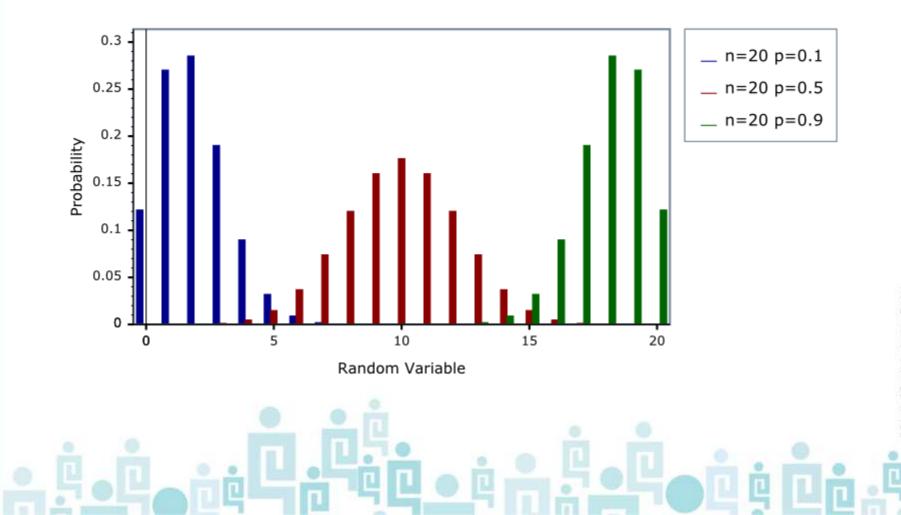
Binomial Distribution

Number of heads	Probability
0	0.25
1	0.50
2	0.25

The mean of the distribution (μ_x) is equal to n * P. The variance (σ_x^2) is n *The standard deviation (σ_x) is sqrt

n * P * (1 - P) sqrt[n * P * (1 - P)].





Cumulative Binomial Probability

- probability that the binomial random variable falls within a specified range
- example, the cumulative binomial probability of obtaining 45 or fewer heads in 100 tosses of a coin

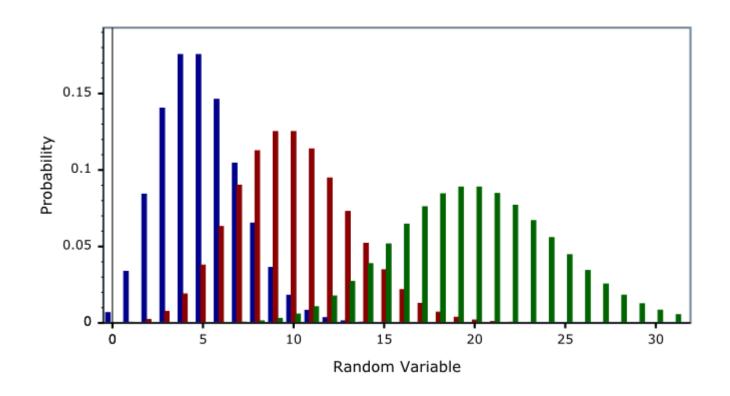
Poisson Distribution

- Outcomes that can be classified as successes or failures.
- Average number of successes in a specified region is known.
- The probability that a success will occur is proportional to the size of the region.
- The probability that a success will occur in an extremely small region is virtually zero
- e: A constant equal to approximately 2.71828.
- λ or μ : The mean number of successes that occur in a specified region.
- **x**: The actual number of successes that occur in a specified region.
- $P(x; \lambda \text{ or } \mu)$: The Poisson probability that exactly x successes occur in a Poisson experiment, when the mean number of successes is μ .

 $\mathsf{P}(x; \lambda) = (e^{-\lambda}) \lambda^{x} / x!$

ng Prt. Ltd.

Poisson Distribution



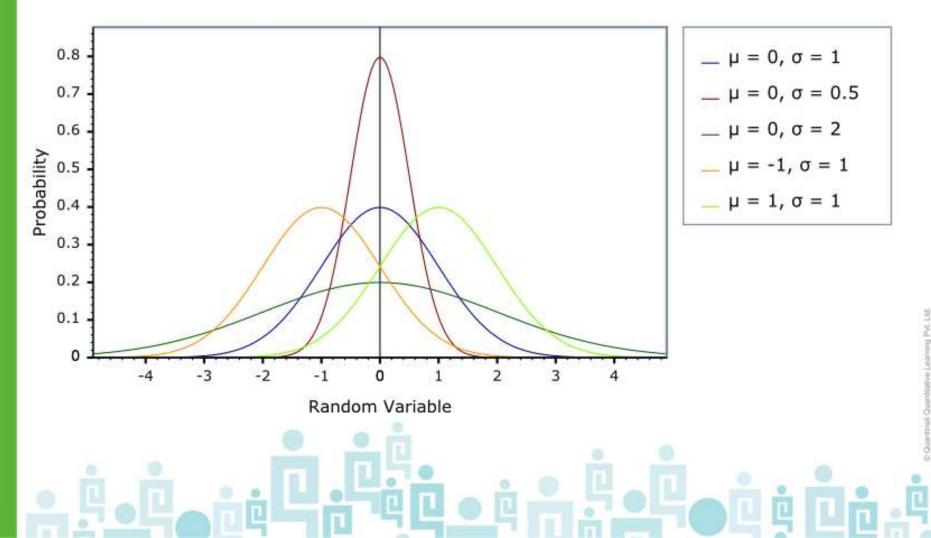
Poisson Distribution

Example

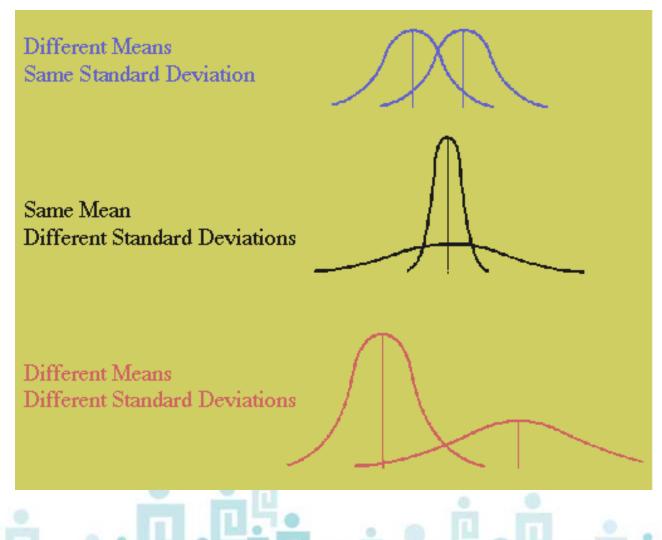
- The average number of homes sold by the Realty Company is 2 homes per day. What is the probability that exactly 3 homes will be sold tomorrow?
- Solution:
- x = 3;
- e = 2.71828;
- $P(x; \mu) = (e^{-\mu}) (\mu^{x}) / x!$
- $P(3; 2) = (2.71828^{-2}) (2^3) / 3!$
- P(3; 2) = (0.13534) (8) / 6
- P(3; 2) = 0.180

Normal Distribution

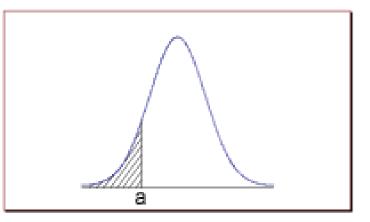
X = { 1/[$\sigma * sqrt(2\pi)$] } * $e^{(-(x-\mu)^2/2/\sigma^2)}$



Normal Curve



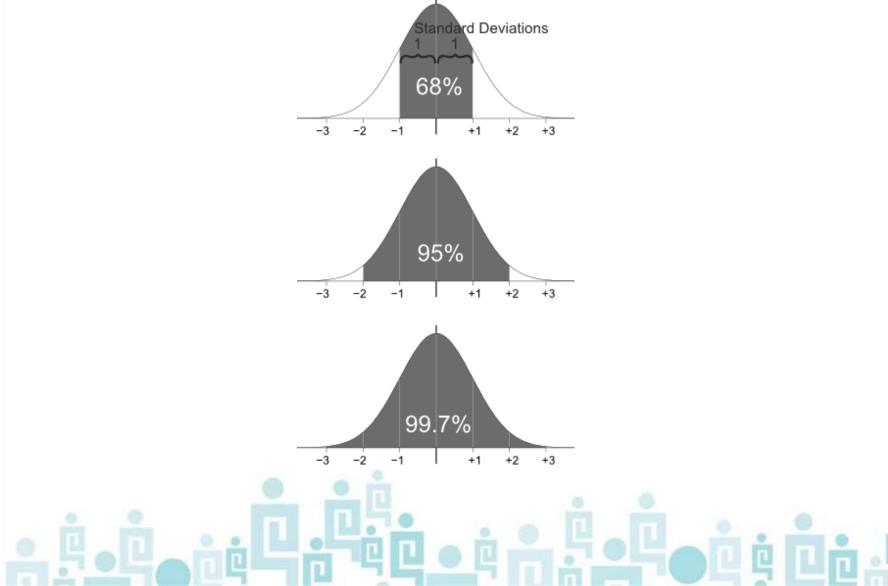
Probability and the Normal Curve



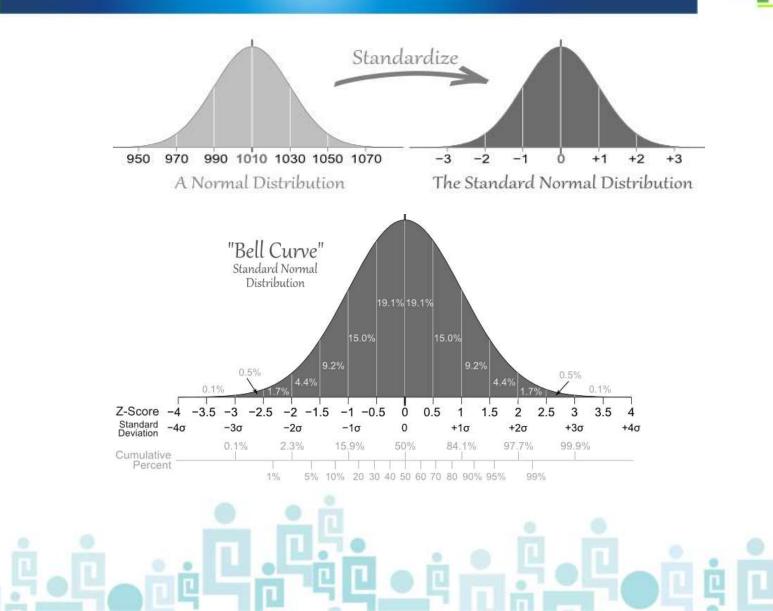
- The total area under the normal curve 1
- The probability that a normal random variable X equals any particular value is 0
- The probability that a random variable assumes a value between *a* and *b* is equal to the **area under the density function bounded by** *a* **and** *b*.
- The probability that X is greater than a equals the area under the normal curve bounded by a and plus infinity
- The probability that X is less than a equals the area under the normal curve bounded by a and minus infinity

68-95-99.7 rule

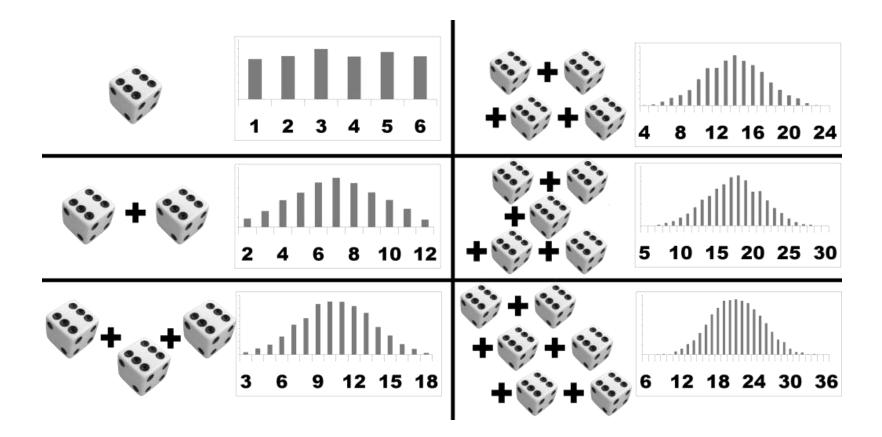
ng Pvt. LML.



Standard Normal Distribution



Central Limit Theorem



Central Limit Theorem

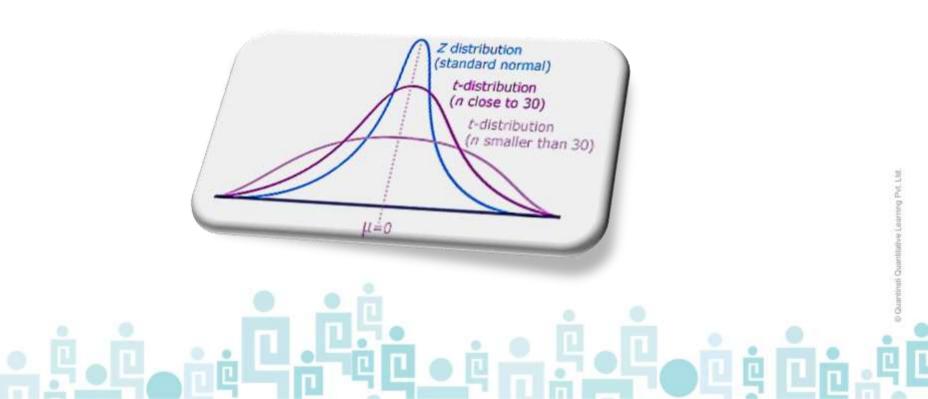
The sampling distribution will be normal for a large sample

Conditions:

- The population distribution is normal.
- The sample distribution is roughly symmetric, unimodal, without outliers, and the sample size is 15 or less.
- The sample distribution is moderately skewed, unimodal, without outliers, and sample size is between 16 and 40.
- The sample size is greater than 40, without outliers.

Student's t Distribution

- t = [x μ] / [s / sqrt(n)]
- Small sample sizes



Estimation Theory

- **QUANT INSTI**
- Process to makes inferences about a population
 - based on information from a sample

250g

 $250g \pm 2.5g$

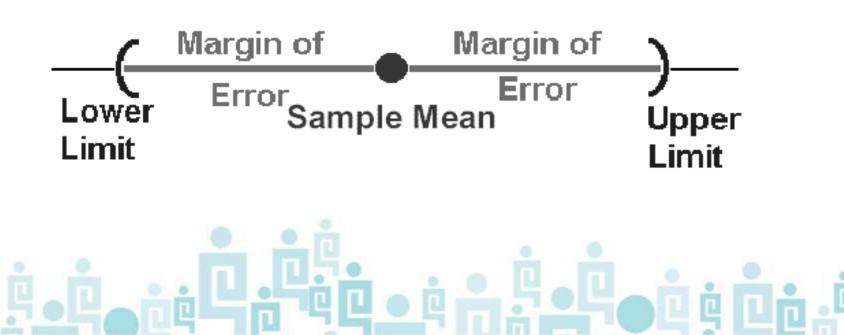
- Point Estimation
 - population mean $\boldsymbol{\mu}\text{,}$ based on sample mean x

 $\pm 2.5g$

- Interval Estimation

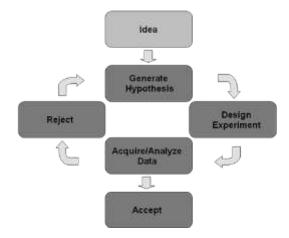
Confidence Interval

- Precision and uncertainty
 - Confidence level
 - Statistic
 - Margin of error



Hypothesis Testing

ming Pvt. LML

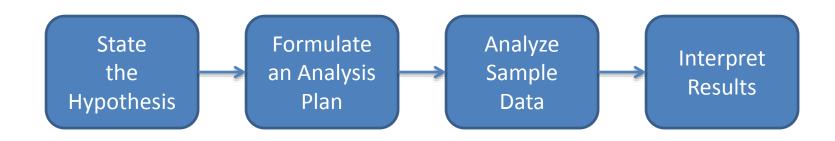


Statistical Hypotheses

- QUANT
- Examine random sample from a population
- Null hypothesis
 - $-H_0$
 - observations result purely from chance.
- Alternative hypothesis
 - $-H_{a}$
 - observations are influenced by some non-random cause.

Hypothesis Tests

ing Put. Ltd.



Decision Error

ng Pvt. Lhb

	Given the Null Hypothesis Is		
Your Decision Based On a Random Sample		True	False
	Reject	Type I Error	Correct Decision
	Do Not Reject	Correct Decision	Туре II Error
	Two T	ypes of Errors i	n Decision Maki

Decision Rules

• P-value.

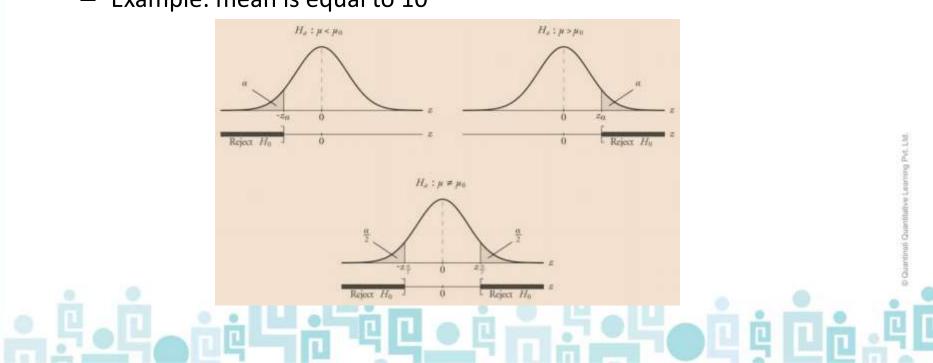
- Strength of evidence in support of a H_0
- P-value is < significance level (0.05), reject H₀

• Region of acceptance.

- range of values.
- test statistic falls within the region of acceptance
- H₀ is not rejected
- defined so that the chance of making a Type I error is equal to the significance level

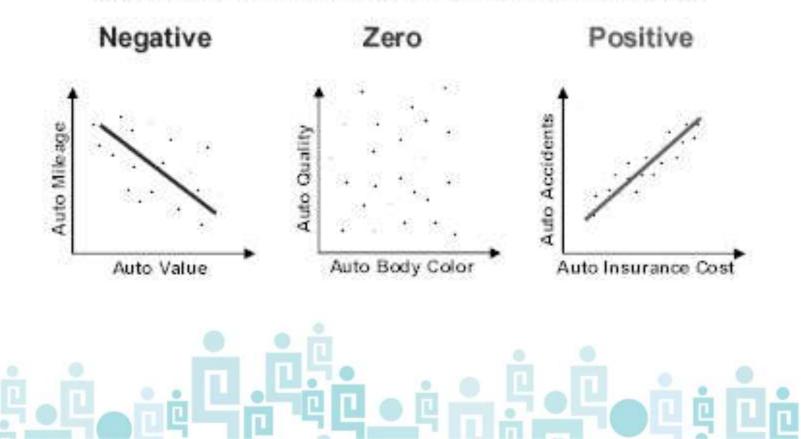
One-Tailed and Two-Tailed Tests

- One-tailed test
 - region of rejection is on only one side of the sampling distribution
 - Example: mean is less than or equal to 10
- Two-tailed test
 - region of rejection is on both sides
 - Example: mean is equal to 10



Linear Correlation

Correlation Relationship Between Two Quantities Such That When One Changes, the Other Does



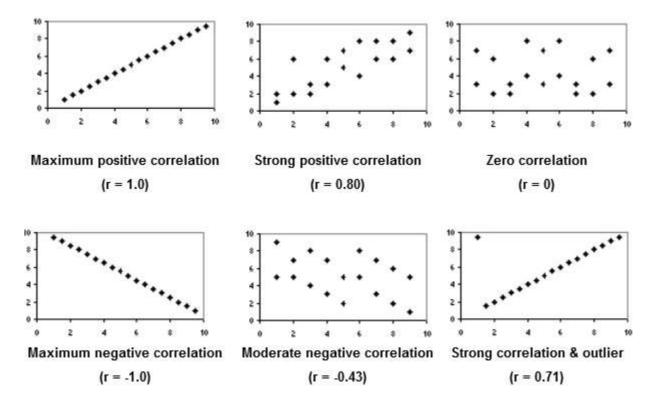
Correlation Coefficients

- Measure the strength of association between two variables
- Pearson product-moment correlation coefficient

$r = \Sigma (xy) / sqrt[(\Sigma x^2) * (\Sigma y^2)]$

- $\mathbf{x} = \mathbf{x}_{i} \mathbf{x},$
- x_i is the x value for observation i
- x is the mean x value,
- $-y = y_i y$
- y_i is the y value for observation I
- y is the mean y value.

Correlation Coefficients

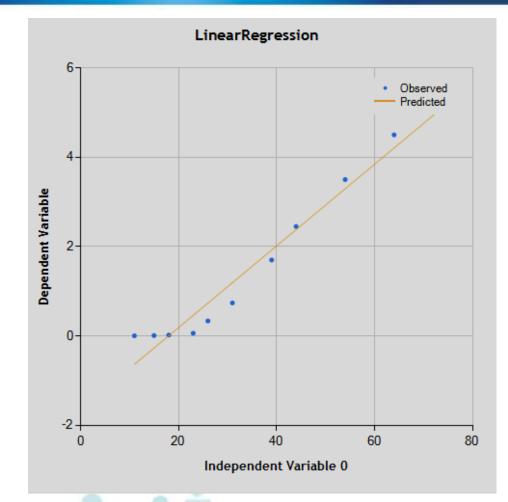


Note:

A correlation of 0 does not mean zero relationship between two variables; rather, it means zero linear relationship.

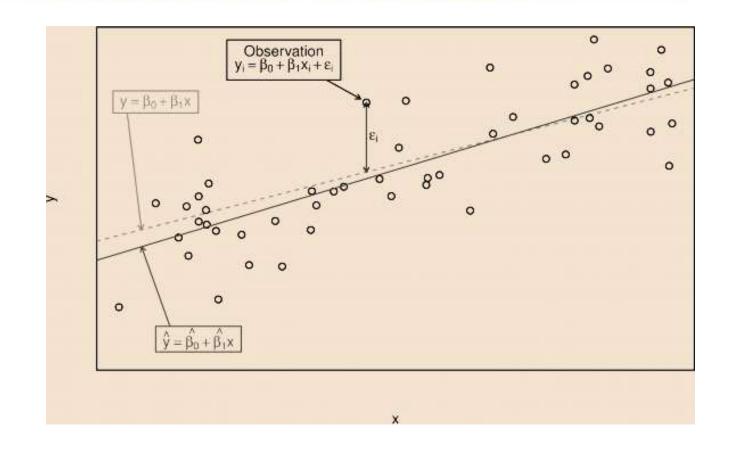
P. Quantinati Quantitative Learning Pet. Ltd.

Linear Regression



P Quantinuti Quantitative Learning Pet. Ltt.

Least Squares Regression Line



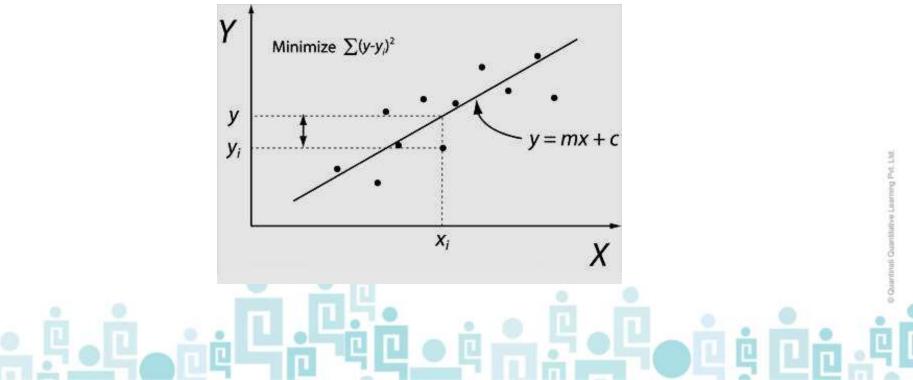
9 PALLM

Regression line

- $\hat{\mathbf{y}} = \mathbf{b}_0 + \mathbf{b}_1 \mathbf{x}$
 - $b_1 = \Sigma [(x_i x)(y_i y)] / \Sigma [(x_i x)^2]$
 - $b_1 = r * (s_y / s_x)$
 - $-b_0 = y b_1 * x$
 - b₀ is the constant in the regression equation
 - b₁ is the regression coefficient
 - r is the correlation between x and y
 - x_i is the X value of observation I
 - y_i is the Y value of observation I
 - x is the mean of X
 - y is the mean of Y
 - s_x is the standard deviation of *X*
 - s_y is the standard deviation of Y

Properties of Regression Line

- Minimizes sum of squared differences
- Passes through mean of the X and Y values (x & y)
- (b₀) is equal to the y intercept
- (b₁) is the slope of the regression line

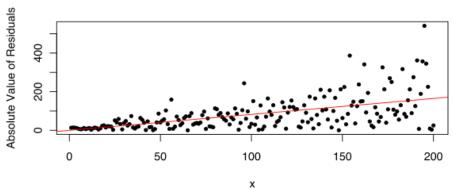


Coefficient of Determination

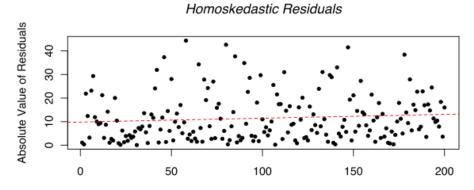
- R²
 - Between 0 and 1
 - $R^2 = 0$, dependent variable cannot be predicted
 - $R^2 = 1$, dependent variable can be predicted without error
 - An R² between 0 and 1 indicates the extent to which the dependent variable is predictable.
 - $R^2 = 0.10$ means that 10% of the variance in Y is predictable from X
 - R² = 0.20 means that 20% is predictable

$R^{2} = \{ (1 / N) * \Sigma [(x_{i} - x) * (y_{i} - y)] / (\sigma_{x} * \sigma_{y}) \}^{2}$

Homoscedasticity and Heteroscedasticity



Heteroskedastic Residuals



х

NO PALLAN

Thank You!

To Learn Automated Trading

Connect With Us:

INDIA A-309, Boomerang, Chandivali Farm Road, Powai, Mumbai - 400 072 Phone: +91-022-61691400

SINGAPORE

11 Collyer Quay, #10-10, The Arcade, Singapore - 049317 Phone: +65-6221-3654

